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Abstract
We demonstrate that two-dimensional Fermi–Pasta–Ulam lattice support exact
discrete compact breather-like solutions. We also find exact compact breather
solutions of the same lattice in presence of long-range interaction with r−s

dependence on the distance in the continuum limit. The usefulness of these
solutions for energy localization and transport in various physical systems are
discussed.

PACS numbers: 63.20.Ry, 63.20.Pw, 36.20.−r

It is now well known that the balance between nonlinearity and dispersion leads to various
localized solutions in nonlinear lattices, such as solitons, discrete breathers etc. These solutions
are usually exponentially localized in space. On the other hand, recently Rosenau and Hyman
showed that the interaction of nonlinear dispersion with nonlinear convection generates exact
compact structures free of exponential tails [1]. Such solutions which are termed as compactons
are basic solutions of Korteweg-de Vries (KdV)-like equations with nonlinear dispersion and
in many cases they behave like a power of trigonometric functions inside their domain of
nonzero values [1]. Stability analysis has shown that compactons are stable structures [2].

In contrast to continuum systems where the compactons have exact compact support,
in nonlinear dispersive lattices the discrete compacton modes become almost compact or
compact-like, by acquiring a very small tail which decays faster than exponential (stretched
exponential) outside the support. More detailed study of the shape profile of compact-like
discrete breathers in nonlinear dispersive lattice systems shows that the tail region decays with
a faster than exponential law, such as a superexponential one [3].

The ability of compactons to store energy in a compact region and also transfer energy
gives them a particular importance. This property is of the highest importance in biological
physics where the mechanism of energy transport in biomolecules, naturally designed for
sustaining life, is still not clearly understood. Discrete breathers have been theoretically
proposed as the relevant mechanism for energy and charge storage and transfer in biomolecules
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and molecular chains [4]. However, the biological systems or the biological macromolecules,
such as proteins, DNA etc have very complex structures and their structure is crucial for
their functionality. Also, molecular chains and DNA molecules contain charged groups, and
there is long-range dipole–dipole interaction between these charged groups. Therefore, one
needs to study models that deviate from simple, typical one-dimensional ones, and incorporate
in the models the more complicated effects of structure or geometry of the actual physical
systems, long-range interactions, disorder as well as nonlinear dispersion. Some studies along
these lines have been reported in the literature recently. Tsironis et al [5] addressed the
energy localization and transport in discrete curvilinear chains that model bioploymers and
showed that above a critical curvature discrete breathers cannot propagate freely in the chains.
Dynamics of bent chains of coupled nonlinear oscillators with long-range interaction are also
reported [6].

However, most of the two-dimensional studies are limited to the simple case of a particular
geometry of the chain with fixed curvature, like the parabolic or wedge shaped chain embedded
in a plane or two straight segments joined by a bent section etc [5, 6]. Also, the angles defining
the curvature of the chain are considered time independent and only the dynamics of the coupled
oscillators on the fixed chain are considered. This puts a limitation on these models to describe
actual biological macromolecules such as DNA or other polymers which are usually not static
entities due to fluctuations. For example, DNA shows large fluctuational opening, in which
the base pairs are temporarily open to allow various biological processes such as processing
of proteins, strand separation etc. Moreover, all these studies considered only the discrete
breathers as localized excitations in the systems. As has been mentioned above, due to their
compact support, the compact breathers are expected to provide better localization of energy at
particular points of the chain, for example, in the promoter sites or bases of the DNA sequence
etc.

In this letter we consider the more general two-dimensional lattice problem. We include
the essential anharmonicity in the system by considering nearest neighbour interaction
potential as Fermi–Pasta–Ulam type. In earlier similar studies as mentioned above, the
geometries of the chain were restricted to a parabola or to a fixed set of angles between bond
vectors at different lattice sites. We remove these constraint conditions on the dynamics of the
chain and consider both the radial coordinates as well as the angular coordinates of the position
vectors as dynamical variables. This corresponds to a more realistic situation in biological
systems. We do not restrict ourselves to any particular shape but consider the arbitrary shape of
the chain. We consider both the cases when the arbitrary shape of the chain is time independent
as well as time dependent. We obtain various exact discrete compact breather-like solutions
for this generalized two-dimensional FPU lattice problem. We also consider the question
of the existence of discrete compact breather solutions in nonlinear dispersive lattice with
long-range interactions. For this we study the dynamics of the two-dimensional FPU lattice
of arbitrary shape with nonlocal dispersive interactions with power dependence r−s on the
distance and obtain various exact compacton breather solutions in the continuum limit.

We model the actual biophysical systems by reducing a macromolecule into a simple
model of polymer chain consisting of N units, each of mass m, labelled by index n, and
denoted by xn, yn the longitudinal and transverse positions of the nth mass wrt a 2D-Cartesian
coordinate system. The Hamiltonian is

H =
∑

n

[
ẋ2

n

2
+

ẏ2
n

2
+ V (dn)

]
(1)

where we have considered the unit mass of each particle and dn is the distance between the
adjacent mass points given by dn = [(xn − xn−1)

2 + (yn − yn−1)
2]

1
2 . We will assume the
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essential anharmonicity in the system, apart from the geometric one entering through dn is of
the Fermi–Pasta–Ulam (FPU) type viz.,

V (dn) = K2
(dn − a)2

2
+ K4

(dn − a)4

4
(2)

where a is the equilibrium distance between particles in the chain, K2 and K4 are strength of
linear and nonlinear forces. The equations of motion can be written in a compact form as

z̈n = Rn+1 + Rn−1 − 2Rn (3)

where time has been normalized to
√

K2t, zn = ξn + iρn, ξn = xn−xn−1

a
, ρn = yn−yn−1

a
, Rn =

zn

|zn| [(|zn| − 1) + γ (|zn| − 1)3] and γ = K4a
2

K2
is the anharmonicity parameter. Using the polar

coordinate zn = rn(t)eiθn(t) we get two coupled discrete differential equations

τ̈ n − (τn + 1)θ̇2
n = gn+1 cos(θn+1 − θn) + gn−1 cos(θn−1 − θn) − 2gn (4)

(τn + 1)θ̈n + 2τ̇ nθ̇ n = gn+1 sin(θn+1 − θn) + gn−1 sin(θn−1 − θn) (5)

where τn(t) = (rn(t) − 1) and gn = τn + γ τ 3
n . The local variables (τn, θn) represent the

normalized local relative deviation of two adjacent masses of the chain wrt the lattice spacing
a and its angles wrt a given axis, respectively. When all local angles are zero, i.e. θn = 0 for
all values of n, then these equations reduce to a one-dimensional FPU model. Tsironis et al [5]
considered a constrained dynamics for simplicity and ignored the second equation completely
and also considered the angular variables to be time independent, i.e. θ̇ n = 0 for all values of
n. Under these approximations, equations (4) and (5) reduce to just one equation, the same
as equation (8) in [5]. We remove these constraint conditions used in [5] and consider both
equations (4) and (5) for nonlinear compact breather solutions. We further remove the fixed
geometry condition assumed in earlier studies [5, 6] and consider arbitrary shape of the chain
and consider the cases when all local angles θn are time independent as well as time dependent.

Let us first consider the case when θn(t) are independent of time, i.e. θ̇ n = 0 for all n.
Substituting equation (5) in equation (4) we get

τ̈ n = [
g2

n+1 + g2
n−1 + 2gn+1gn−1 cos(θn+1 − θn−1)

] 1
2 − 2gn. (6)

We look for static discrete compact breather solutions of the form

τn(t) = Afn cos(ωt) (7)

where,

fn = cos(B(n − n0)), for |n − n0| <
π

2B (8)
= 0, otherwise.

For compacton solutions to exist, the width B should be independent of the amplitude A.
Substituting equations (7) and (8) in equation (6) and using rotating wave approximation
(RWA), we obtain the exact compact breather solution for the shape of the chain given by

cos(θn+1 − θn−1) = µ cos2(B(n − n0)) + p

cos2(B(n − n0)) − sin2(B)
(9)

and for a set of parameter values {ω,µ, p,B}. The solutions exist for three set of parameter
values given by

{
ω2 = 4 + 2A2γ1, µ = 3, p = −1, B = π

2

}
;
{
ω2 = 3 + 9

4A2γ1, µ = 1, p =
− 3

4 , B = 2π
3

}
;
{
ω2 = 3 + 9

4A2γ1, µ = 1, p = − 3
4 , B = π

3

}
, where γ1 = 3

4γ . It may be noted
that other forms of discrete compact breather solutions may also exist for the system.

It is appropriate to mention here that even the approximate one-dimensional modified
FPU model considered by Tsironis et al (equation (8) in [5]) also have discrete travelling
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compacton solutions of the form τn(t) = A cos(B(n − vt)), for |(n − vt)| < π
2B

and zero
otherwise and for the shape of the chain given by

cos(θn+1 − θn) = cos(θn−1 − θn) = 1

cos(B)(2 cos(2B) − 1)
(10)

and the compacton velocity given by v2 = (cos(2B)−1)(4+3γA2)

B2(2 cos(2B)−1)
. The same equation (equation (8)

in [5]) also has discrete static compact breather solutions of the form of equations (7) and (8)
above for the same shape of the chain given by equation (10). The breather frequency is given
by ω2 = (cos(2B)−1)(4+3γ1A

2)

(2 cos(2B)−1)
, where γ1 = 3

4γ . Both the static compact breather solutions and

the travelling compacton solutions exist for arbitrary amplitude A and width B = π
3 , 2π

3 .
We now look for discrete travelling compact breather solutions of equations (4) and (5)

when the curvature of the chain is time dependent, i.e. θ̇ n �= 0. We use the ansatz

τn(t) = Aψn(t) cos(ωt) (11)

where ψn(t) = cos(B(n − vt)), for |n − vt | < π
2B

and zero otherwise.
For large breather amplitude, A � 1 and for small angular difference between the lattice

sites, equations (4) and (5) are approximated respectively as

τ̈ n − τnθ̇
2
n = gn+1

(
1 − (θn+1 − θn)

2

2

)
+ gn−1

(
1 − (θn−1 − θn)

2

2

)
− 2gn (12)

τnθ̈n + 2τ̇ nθ̇ n = gn+1(θn+1 − θn) + gn−1(θn−1 − θn). (13)

Defining the shape of the chain as θn(t) = ηψn(t) we get exact travelling compact
breather solutions for a set of parameter values {v, B, ω, η} and arbitrary amplitude A.
For FPU lattice with anharmonicity parameter γ < 0, the solutions exist for v2 =
(0.8535+0.546γA2)

B2 , cos(B) = 0.382 683, η2 = −651.525γA2

(263.34+93γA2)
, ω2 = 1.252(0.85+γA2)(2.03+γA2)

(2.83+γA2)
and

|γ |A2 < 0.85. For a lattice with γ > 0, the solutions exist for two set of parameter values given
by

{
cos(B) = 0.923 88, η2 = 1446.95γA2

(−159.5+93γA2)
, ω2 = 0.28(−1.11+γA2)(0.064+γA2)

(−1.715+γA2)

}
and

{
cos(B) =

−0.923 88, η2 = 119.17γA2

(115.85+93γA2)
, ω2 = 2.1535(1.61+γA2)(2.66+γA2)

(1.25+γA2)

}
, with v2 = (0.146+0.016γA2)

B2 and

γA2 > 1.715.
As mentioned earlier, in an actual discrete lattice, the exact discrete compact breather

solutions as obtained above may not be exactly zero outside the compact support but the
breathers may become compact-like by acquiring a very small tail. Beyond the breathers’
support the tail (discrete effects) decay at a super exponential rate [3] and the interplay of
nonlinear force and nonlinear dispersion creates a genuine screening effect beyond which there
is no measurable motion. In that sense, the discrete compact breather solutions as obtained
above may be an approximation in the tails. Hence we term these solutions as exact compact
breather-like solutions (also termed as almost compact breather solutions by Rosenau et al
[3]).

We now consider the question of existence of the discrete compact breather solution in
the two-dimensional FPU lattice in presence of long-range nonlinear dispersive interactions.
The model is described by the Hamiltonian

H =
∑

n

[
ẋ2

n

2
+

ẏ2
n

2
+

∑
p

K2

2

(dn,p − a)2

|p|s1
+

∑
p

K4

4

(dn,p − a)4

|p|s2

]
(14)

where p = 1, 2, 3, . . . and s1 and s2 are the long-range interaction parameters for the harmonic
and anharmonic interactions respectively and dn,p = [(xn − xn−p)2 + (yn − yn−p)2]

1
2 . The

equations of motion are given by

τ̈ n − (τn + 1)θ̇2
n =

∑
p

[gn+p,p cos(θn+p − θn) + gn−p,p cos(θn−p − θn) − 2gn,p] (15)



Letter to the Editor L103

(τn + 1)θ̈n + 2τ̇ nθ̇ n =
∑

p

[gn+p,p sin(θn+p − θn) + gn−p,p sin(θn−p − θn)] (16)

where gn,p = τn

|p|s1 + γ
τ 3
n

|p|s2 . For p = 1 these equations reduce to equations (4) and (5),
respectively.

It is a very difficult problem to solve these coupled discrete equations analytically. For
the case of harmonic interaction between the oscillators, analytic solutions can be obtained by
approximate methods like the variational method and lattice Green’s function method. Such
methods cannot be implemented as easily in the present case with anharmonic nonlocal long-
range dispersive interactions. However, we realized that some special solutions in which we are
interested here, such as the spatially localized solutions with compact support, can be obtained
in the continuum limit. The advantage of obtaining the continuum solutions is that it may be
possible to use these solutions as initial conditions to obtain the solutions of the actual discrete
lattice numerically. Our earlier studies of the numerical simulations of the dynamics of 1D
FPU lattice with long-range interactions showed that the exact continuum compacton breather
solutions correctly predict the essential compact span of the corresponding discrete compact
breather and also, the continuum solutions survive in the actual discrete lattice for a time over
hundreds of periods of the discrete breather [7]. We therefore go to the long wavelength limit
and in the weak nonlinear limit we obtain the continuum dynamical equations of motion as

τtt − (τ + 1)θ2
t = ζ(s1 − 2)τ2x + 1

12ζ(s1 − 4)τ4x + γ ζ(s2 − 2)(τ 3)2x

− [
ζ(s1 − 2)τ + γ ζ(s2 − 2)τ 3 + 1

2ζ(s1 − 4)τ2x + 1
2γ ζ(s2 − 4)(τ 3)2x

]
θ2
x (17)

(τ + 1)θtt + 2θt τt = [
2ζ(s1 − 2)τx + 1

3ζ(s1 − 4)τ3x + 6γ ζ(s2 − 2)τ 2τx

]
θx (18)

where subscripts denote partial derivative and ζ(s) is the Riemann zeta function [7]. For
large amplitude we can obtain an exact travelling compacton breather solution of the form
τ(x, t) = Aφ(x, t) cos(ωt), where φ(x, t) = cos(B(x − vt)), for |x − vt | < π

2B
and zero

otherwise and for the shape of the chain given by θ(x, t) = ηφ(x, t). The parameters are
given by B2 = 2ζ(s2−2)

9ζ(s2−4)
, v2 = ζ(s1 − 2) − ζ(s2−2)ζ(s1−4)

27ζ(s2−4)
, η2 = 243γA2ζ(s2−4)

54γA2ζ(s2−4)−8ζ(s1−4)
, ω2 =

ζ(s2−2)

486(ζ(s2−4))2 [108ζ(s1 − 2)ζ(s2 − 4) + ζ(s2 − 2)(243γA2ζ(s2 − 4) − 2ζ(s1 − 4))] and the
anharmonicity parameter γ and the amplitude A are arbitrary. Thus the set of parameters
B, v, η and ω for which the exact travelling compacton breather solutions exist depend on the
Riemann zeta functions, which are again functions of the long-range interaction parameters s1

and s2. Therefore, the allowed ranges of the parameters s1 and s2 are those for which Riemann
zeta functions are finite and the set of parameter values are finite and real and are given by
s1 = 4, s2 > 5 and s1, s2 > 5.

It may also be noted that the continuum limit of equation (8) in [5] with long range
interactions as above also has an exact static compacton breather solution of the form
τ(x, t) = Aφ(x) cos(ωt), φ(x) = cos(Bx) for |x| < π

2B
and zero otherwise and for the

time-independent shape of the chain as θx = µφ(x).
In conclusion, we have obtained exact discrete compact breather-like solutions of the two-

dimensional FPU lattice. To model various physical processes, such as energy localization
and transport in more realistic biophysical systems, we have relaxed the constraint conditions
(of fixed geometry) put on the dynamics by earlier similar studies and considered the more
general dynamics of nonlinear oscillators on a two-dimensional FPU chain of arbitrary shape.
We have considered both the cases when the arbitrary shape of the chain is time independent
as well as time dependent. We have also considered the dynamics of the 2D FPU lattice in
presence of long-range interactions with r−s dependence on distance and obtained various
exact compact breather solutions in the continuum limit. It may be possible to use these
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continuum solutions as initial conditions in the numerical simulation to look for the existence
of discrete compact breather solutions in the actual 2D discrete FPU lattice with long-range
interactions. Work along this direction is in progress and will be reported elsewhere.

Acknowledgments

The authors would like to thank DST(India) for financial assistance through a research grant.
BD would like to thank GP Tsironis for discussions.

References

[1] Rosenau P and Hyman J M 1993 Phys. Rev. Lett. 70 564
Rosenau P 1994 Phys. Rev. Lett. 73 1737
Dey B 1998 Phys. Rev. E 57 4733

[2] Dey B and Khare A 1998 Phys. Rev. E 58 R2741
[3] Eleftheriou M, Dey B and Tsironis G P 2000 Phys. Rev. E 62 7540

Dey B, Eleftheriou M, Flach S and Tsironis G P 2001 Phys. Rev. E 65 017601
Rosenau P and Shochet S 2005 Chaos 15 015111
Rosenau P and Shochet S 2005 Phys. Rev. Lett. 94 045503

[4] Peyrard M (ed) 1995 Nonlinear Excitations in Biomolecules (Berlin: Springer) see also several related articles
in Physica D 1993 68 1

Yakushevich L V 1998 Nonlinear Physics of DNA (New York: Wiley)
Heeger A J, Kivelson S, Schrieffer J R and Su W P 1988 Rev. Mod. Phys. 60 781

[5] Tsironis G P, Ibanes M and Sancho J M 2002 Euro. Phys. Lett. 57 697
[6] Larsen P V, Christiansen P L, Bang O, Archilla J F R and Gaididei Yu B 2004 Phys. Rev. E 69 026603

Larsen P V, Christiansen P L, Bang O, Archilla J F R and Gaididei Yu B 2004 Phys. Rev. E 70 036609
[7] Dey B, Eleftheriou M and Tsironis G P 2001 Nonlinearity and Disorder: Theory and Applications ed F Abdullaev

et al (Dordrecht: Kluwer) pp 189–95

http://dx.doi.org/10.1103/PhysRevLett.70.564
http://dx.doi.org/10.1103/PhysRevLett.73.1737
http://dx.doi.org/10.1103/PhysRevE.57.4733
http://dx.doi.org/10.1103/PhysRevE.58.R2741
http://dx.doi.org/10.1103/PhysRevE.62.7540
http://dx.doi.org/10.1103/PhysRevE.65.017601
http://dx.doi.org/10.1063/1.1852292
http://dx.doi.org/10.1103/PhysRevLett.94.045503
http://dx.doi.org/10.1103/RevModPhys.60.781
http://dx.doi.org/10.1209/epl/i2002-00519-4
http://dx.doi.org/10.1103/PhysRevE.69.026603
http://dx.doi.org/10.1103/PhysRevE.70.036609

	Acknowledgments
	References

